Frequency Offset Estimation in OFDM Systems using Threshold based Scheme

Alka Sonkar  
Electronics & Communication  
Jabalpur Engineering College  
Jabalpur, Madhya Pradesh, India  
alkasonkar07@gmail.com

Prabhat Patel  
Electronics & Communication  
Jabalpur Engineering College  
Jabalpur, Madhya Pradesh, India  
prabhat.patel@jec-jabalpur.org

Abstract—The Performance of the Orthogonal Frequency Division Multiplexing (OFDM) systems degrade due to Doppler frequency or frequency drift between transmitter and receiver oscillator which causes frequency offset and hence leads to a number of impairments in the received signal, thereby making its detection incorrect. In this paper, a threshold-based frequency offset estimation algorithm for orthogonal frequency division multiplexing (OFDM) systems is further analyzed. The algorithm shows robust performance in the presence of timing offset. The threshold used in correlation and coherence phase bandwidth lowers the computation complexity when compared with the existing schemes. Through a detailed analysis and simulation over AWGN channel, it has been shown that the scheme analyzed maintains the same level of estimation performance with lower complexity than the existing schemes.

Keywords—Frequency offset, OFDM, synchronization, coherence phase bandwidth (CPB)

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) has been chosen as the most promising transmission technique in several mobile radio communication systems, such as the European Digital Audio Broadcasting (DAB) system and the Digital Video Broadcasting (DVB) system [1]. One of the drawbacks of OFDM has proven to be its high sensitivity to frequency offset. This frequency offset is usually divided into an integer part, which is a multiple of the subcarrier spacing, and a fractional part, which is less than one half of the subcarrier spacing. The former results in a shift of the subcarrier indices, while the latter causes a number of impairments, including attenuation and rotation of each of the subcarriers and inter-carrier interference (ICI) between subcarriers [4].

In the literature several schemes have been proposed in [2]-[6] to estimate the frequency offset. The frequency offset estimation schemes can be classified into two categories: fractional frequency offset estimation schemes [4], [5], [6] and integer frequency offset estimation schemes [2], [3]. For integer frequency offset estimation, an estimation scheme was proposed in [2] (Nogami’s scheme) using the cross correlation between the received and locally generated training symbols. However, the scheme in [2] is very sensitive to the timing offset. Thus, in [3] (Bang’s scheme), an estimation scheme robust to the timing offset was proposed considering CPB in its estimation process. However, the scheme in [3] still has the problem that the complexity in implementation rapidly increases, as the frequency offset estimation range increases.

The frequency offset estimation algorithm analyzed in this paper is robust to a symbol timing offset and has lower computational complexity when compared with Nogami’s [2] and Bang’s [3] schemes.

II. SYSTEM MODEL

In an OFDM system, the complex baseband OFDM signal after the IFFT block at the transmitter can be expressed as

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k)e^{j\frac{2\pi nk}{N}}, n = 0, 1, 2 \ldots N - 1$$

where $N$ is the total number of subcarriers, $X(k)$ denotes the transmitted quadrature amplitude modulation (QAM) or $M$-ary phase-shift keying (PSK) modulated symbol on the subcarrier $k$ with $k = 0, 1, 2, \ldots, N-1$.

In the presence of frequency and timing offsets, the received OFDM signal $r(n)$ can be expressed as

$$r(n) = x(n - n_o)e^{j\frac{2\pi (n-n_o)f_o}{N}} + w(n)$$

where $f_o$ and $n_o$ represent the frequency and timing offsets normalized to the subcarrier spacing and sample interval $1/T_s$, respectively, $T_s$ is the symbol duration and $w(n)$ is the zero-mean complex additive white Gaussian noise (AWGN).

The frequency offset $f_o$ can be divided into an integer part and a fractional part as

$$f_o = f + \Delta f$$

where $\epsilon$ is the integer part of $f_o$ and $\Delta f \in [-0.5, 0.5]$ is the fractional part of $f_o$. 

$\epsilon$ is the integer part of $f_o$ and $\Delta f \in [-0.5, 0.5]$ is the fractional part of $f_o$. 

471
We estimate integer frequency offset and assume that the fractional part is known and perfectly compensated. The received symbol is demodulated using FFT operation. The kth FFT output $R(k)$ can be expressed for $k = 0, 1, 2, \ldots , N - 1$ as
\[ R(k) = X(k - \epsilon)e^{-\frac{2\pi[i(k-\epsilon)]}{N}} + W(k) \]
where $W(k)$ is the FFT of $w(n)$.

III. NOGAMI’S SCHEME

To estimate the integer frequency offset, Nogami’s scheme examines the correlation value between the known training symbol and the cyclically shifted version of the received training symbol, and then, obtain the integer frequency offset estimate as
\[ \hat{\epsilon} = \arg \max_{d} \left\{ \sum_{k=0}^{N-1} Z^*(k)R(k + d)N \right\} \]
where $d$ is the amount of cyclic shift, $(.)N$ is the modulo-N operator, $R(k)$ is the received pilot symbol and $Z(k)$ is the known pilot symbol. Nogami’s algorithm was proposed on the assumption of perfect timing synchronization, so it is not appropriate for cases where a symbol timing offset exists. Thus, its estimation performance degrades in the presence of timing offset.

IV. COHERENCE PHASE BANDWIDTH

The coherence phase bandwidth $BW_c$ is defined as the maximum integration range according to the allowed symbol timing offset $T_{allow}$, which can be guaranteed in the coarse timing synchronization. The coherence phase bandwidth is expressed as follows:
\[ BW_c \approx \frac{1}{2} \frac{BW}{T_{allow}} \]
where $BW$ is $N$. In fact, $BW_c$ represents the integration range within which the correlation value reaches the first peak of the plot for $\tau = T_{allow}$ in Fig. 1.

Fig. 1 shows the plots for the correlation values from (4) with respect to the integration range for several values of the symbol timing offset. For a symbol timing offset within half of a sample period, the correlation value increases monotonically depending on the increment of the integration range. However, for a symbol timing offset of more than one sample period, the correlation value oscillates according to the increment of the integration range and is 0 or near 0 for a certain integration range.

In particular, when the integration range is $N$, the correlation value is 0 or near 0 if the symbol timing offset is in the proximity of an integer value. This means that Nogami’s algorithm may fail to estimate the coarse frequency offset if a certain symbol timing offset exists. However, one can also find that for any symbol timing offset larger than 1, there exists a certain integration range (smaller than $N$) for which the correlation values increases monotonically.

If we let the integration range be $BW_c$, no other correlation value with the integration range of $BW_c$ falls to zero if $\tau < T_{allow}$. This concept was utilized in Bang’s scheme.

V. BANG’S SCHEME

Bang’s scheme adopts the concept of the coherence phase bandwidth for the purpose of weakening the effect of symbol timing offset. The coherence phase bandwidth is obtained by (5). The total system bandwidth is divided into a number of blocks with coherence phase width i.e.
\[ K = \frac{BW}{BW_c} \]
where $K$ is the number of divided blocks.

In this algorithm, the correlation is calculated individually within each small block and then summed. The estimated coarse frequency offset is obtained as
\[ \hat{\epsilon} = \]
VI. THRESHOLD BASED FREQUENCY OFFSET ESTIMATION

When we calculate one CPB block in (7), correlation value $C$ can be expressed as

$$C = \arg \max_d \left\{ \sum_{n=0}^{N-1} \left( \sum_{k=0}^{CPB-1} Z^*(k + mBW_c) R(k + mBW_c + d) N \right) \right\}$$

(7)

Where $CPB = \frac{1}{2n_0} N$ and $n_0$ is the maximum tolerable timing offset value.

Assuming $d = \epsilon$ and ignoring AWGN components in (8), the correlation value $C$ can be expressed as

$$C = \left| \sum_{k=0}^{CPB-1} \sum_{n=0}^{N} e^{-j2\pi nk} \frac{1}{N} \right|$$

The value $C$ in (9) is minimum when $n_0 = n_0^\perp$. Therefore, the minimum correlation value $C_{\text{min}}$ can be expressed as

$$C_{\text{min}} = \left| \sum_{k=0}^{CPB-1} \sum_{n=0}^{N} e^{-j2\pi nk} \frac{1}{N} \right|$$

(10)

We also express the minimum value of full correlation in a similar manner as

$$C_{\text{min}} = \frac{n_0^\perp}{N} \left| \sum_{k=0}^{CPB-1} \sum_{n=0}^{N} e^{-j2\pi nk} \right|$$

(11)

In this paper, we use a threshold $\eta$ as a half of $C_{\text{full, min}}$

$$\eta = \frac{n_0^\perp}{N} \left| \sum_{k=0}^{CPB-1} \sum_{n=0}^{N} e^{-j2\pi nk} \right|$$

(12)

The above algorithm works as follows:

1. Calculate CPB.
2. Then calculate $\eta$ from equation (12).
3. The correlation value is acquired using the CPB from (8).
4. If the correlation value exceeds $\eta$, then $d$ is decided to be the correct estimate of $\epsilon$. Otherwise, the received signal is cyclically shifted by $d$ and the above procedure is repeated.

If the expected frequency offset range is sufficiently large, the proposed scheme will generally have about a half computational complexity when compared with others. Also, it should be noted that the proposed scheme does not require additional memory for correlation values unlike Nogami’s and Bang’s schemes.

VII. SIMULATION RESULTS

The simulation has been performed over MATLAB. Fig. 2 shows the correlation values of Nogami’s scheme when $d = \epsilon$ and $N = 1024$ in the absence ($\tau = 0$) and presence $\tau = 0.5, 1, 2$ of timing offset. In the absence of timing offset, the correlation value increases as the integration range increases, on the other hand, in the presence of timing offset, the correlation value oscillates.

Fig. 2. The correlation values of Nogami’s scheme in the absence and presence of timing offset when $d = \epsilon$ and $N = 1024$.

Fig. 3 shows Nogami’s correlation function as a function of timing offset. From the figure, we can see that the correlation value becomes smaller as the value of timing offset increases.

Fig. 4, when the integration range is $BW_c$, the correlation value of Bang’s scheme increases monotonically as the value of integration range increases. Fig. 5 shows Bang’s
correlation function as a function of timing offset. From the figure, we can observe that the correlation function has no zero-crossing point unlike Nogami’s correlation function. Thus, Bang’s scheme would have the better estimation performance than Nogami’s scheme in the presence of timing offset. However, Bang’s scheme has high computational complexity since the correlation values are calculated for all possible values of \( d \).

Fig. 3. The correlation values from Bang’s scheme versus the integration range for several values of timing offset (when \( d = \epsilon, N = 1024, \) and CPB= 256).

Fig. 4. The correlation value from Bang’s scheme plotted as a function of timing offset \( n0 \) (when \( d = \epsilon \) and CPB= \( N/10 \)).

In this paper, we use AWGN as the channel model for performance comparison. The signal-to-noise ratio (SNR) of AWGN channel model is 5 dB. The frequency offset used in this simulation is an integer value in \([0, 500]\), \( N = 1024, \) and CPB= \( N/32 \).

Table 1, for \( L \gg 1 \), where \( L \) is the frequency offset range, illustrates that the proposed scheme exhibits approximately half computational complexity compared with the Nogami’s and Bang’s schemes.

Table 2 depicts that the proposed scheme exhibits significantly improved frequency offset estimation performance over Nogami’s scheme and almost comparable performance to Bang’s scheme in the presence of the timing offset.

**TABLE I**

<table>
<thead>
<tr>
<th>Scheme</th>
<th>No. of complex multiplication</th>
<th>No. of comparison operation</th>
<th>Size of memory for correlation value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nogami’s Scheme</td>
<td>( LN )</td>
<td>( L-1 )</td>
<td>( L )</td>
</tr>
<tr>
<td>Bang’s Scheme</td>
<td>( LN )</td>
<td>( L-1 )</td>
<td>( L )</td>
</tr>
<tr>
<td>Threshold based scheme</td>
<td>( \frac{L+1}{2}N )</td>
<td>( \frac{L+1}{2} )</td>
<td>-</td>
</tr>
</tbody>
</table>

**TABLE II**

<table>
<thead>
<tr>
<th>Timing Offset(samples)</th>
<th>Nogami’s Scheme</th>
<th>Bang’s Scheme</th>
<th>Threshold based Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

**VIII. CONCLUSION**

In this paper, we have analyzed frequency offset estimation scheme based on threshold and CPB. The simulation results show that the scheme exhibits much lower complexity than the conventional schemes by using threshold for decision making. It maintains the same level of estimation performance when compared with the existing schemes. At the same time it is robust against symbol timing offset by using the concept of CPB.

**IX. REFERENCES**


**Alka Sonkar** born in Jabalpur, Madhya Pradesh, India on 16 July 1984. She received bachelor of engineering degree in Electronics & Communication from Guru Ramdas Khalsa Institute of Science & Technology, Jabalpur, Madhya Pradesh, India in 2006. Currently, she is pursuing Master of Engineering degree in Communication Systems from Jabalpur Engineering College, Jabalpur, Madhya Pradesh, India. And also she is working as Lecturer in Kalaniketan Polytechnic College, Jabalpur, Madhya Pradesh, India.

**Dr. Prabhat Patel** born in Rewa, Madhya Pradesh, India on 15 March 1972. He received bachelor of engineering degree in Electronics & Communication from Government Engineering College, Rewa, Madhya Pradesh, India. He received the Master’s and Ph.D degrees from IIT, Kanpur, India. Currently, he is working as Associate Professor in Engineering College, Jabalpur, Madhya Pradesh, India.